Economics of Cryptocurrencies

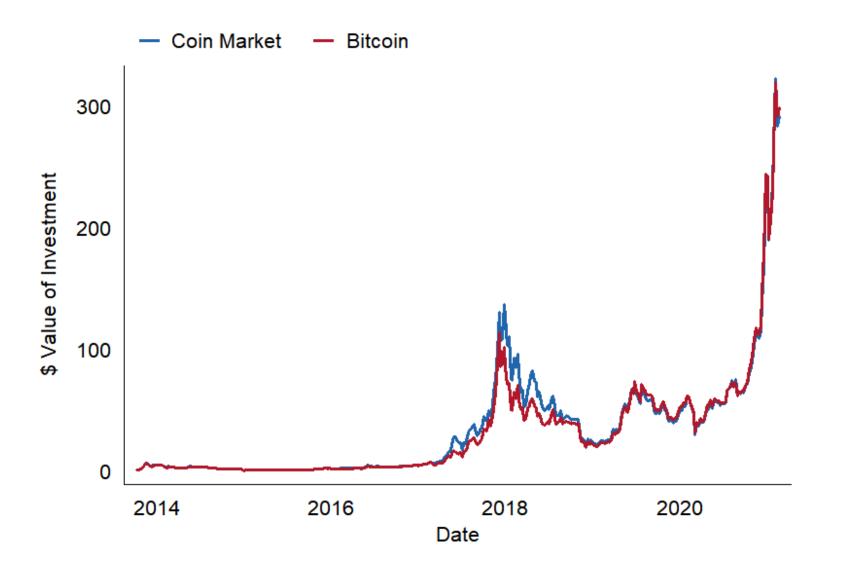
Aleh Tsyvinski

Yale University and New Economic School

This presentation is based on

- Liu and Tsyvinski "Risks and Returns of Cryptocurrency", The Review of Financial Studies, 2020
- Liu, Tsyvinski, Wu "Risks and Returns of Cryptocurrency", The Journal of Finance, 2020 conditionally accepted
- and other ongoing work

Professor Yukun Liu, Department of Finance, Simon School of Business, University of Rochester Professor Xi Wu Department of Accounting, Haas School of Business, University of California, Berkeley


Main idea

• Understand cryptocurrencies from the point of view of asset pricing

• Disclaimer: do not take anything here as an investment advice

First ... lets create an index: CMKT

- 1800 currencies coin market (CMKT):
 - Value weighted
- Capitalization >1 mln. USD
- Data:
 - Quality mostly good but need to vet carefully

Some basic statistical properties since 2014 – weekly

- Mean return: 2.25%
 - Stocks: 0.23%
- Volatility: 12.89% standard deviation
 - Stocks: 2.11%
- Sharpe ratio: return/volatility: 0.17 (yearly: 1.26)
 - Stocks: 0.11 (0.79)

Fact #1:

- Crypto has an order of magnitude higher returns and is an order of magnitude more volatile than stocks
 - but has a broadly similar Sharpe ratio

Is crypto:

- "currency"?
- "digital gold" or a "commodity"?
- a "bet on future technology"?
- an "inflation/macro hedge"?

Currency?

- Exposure to returns of
 - Australian dollar,
 - Canadian dollar,
 - Euro,
 - Singaporean dollar,
 - U.K. pound
- Exposures to currency factors
 - as Lustig, Roussanov, and Verdelhan (2011)
- Answer:
 - <u>no statistically significant exposure</u>

Commodities?

- Exposure to returns of:
 - gold,
 - platinum,
 - silver
- Answer:
 - no statistically significant exposure to precious metal commodities

A bet on the future of technology?

• Exposure to the **equity risk factors**:

- Capital Asset Pricing Model (CAPM),
- Fama-French three-factor,
- Carhart four-factor,
- Fama-French five-factor and six-factor models.
- No statistically significant exposure to the known factors

• Exposure to the "factor zoo"

- factors for predicting the cross-section of stock returns (Feng, Giglio, and Xiu 2017 and Chen and Velikov 2017)
- the loadings of the **155 factors**
- No evidence of systematic exposure

"Macro hedge?"

• Exposure to macro factors:

- nondurable consumption growth,
- durable consumption growth,
- industrial production growth,
- personal income growth
- No statistically significant evidence of exposure

Inflation and inflation expectations?

• <u>No statistical evidence of exposures to either inflation or inflation</u> <u>expectations (level/growth)</u>

Fact #2

• Crypto is driven by different factors than standard assets

But then ...

- It is great for diversification
- Should hold at least some in your portfolio
- More precisely:
 - Black-Litterman how much should a risk-neutral investor with different views hold

Wait a second ...

- Random noise is also uncorrelated
- Is crypto just noise?

Theory: Network factors

- Cong, Li, and Wang 2019; Sockin and Xiong 2019; Pagnotta and Buraschi 2018; Biais et al. 2018
- Main idea:
 - more users → higher value of the "network" (similar to, for example, social networks)
- Can also think as a "measure of value or utility"

Testing network factors:

- Construct:
 - number of wallet users,
 - number of active addresses,
 - number of transaction counts,
 - number of payment counts (and many others)
- Coin market (CMKT) returns:
 - <u>Positively correlate</u> with network factors
- Also, <u>dynamically</u>:
 - Crypto prices are forward looking and contain info about future network adoptions
 - <u>High coin market returns predict higher future # of users</u>

Theory: production factors

- Theory
 - Sockin and Xiong 2019; Abadi and Brunnermeier 2018; Cong, He, and Li 2018
- Costs of mining are important drivers of prices
- Crypto mining = Computing power * Electricity

Tests:

• Proxy for **electricity costs**:

• electricity prices and generation in USA, China, Sichuan (largest mining farm)

• Proxy for **computing power**:

- prices of Bitmain Antminer, stock prices of NVIDIA, AMD, Taiwan Semiconductor Manufacturing Company, etc. – specialized chip manufacturers
- Other tests:
 - Proxy the **profitability of miners** (theory: Easley, O'Hara, and Basu 2019)
- Answer:
 - <u>no evidence of production factors playing a significant role</u>

Fact 3: Crypto prices are driven by demand (utility) considerations but not by supply (production) considerations

Are cryptocurrency returns predictable?

- Specifically:
 - do they behave similar to other asset classes in terms of their "crypto characteristics"

What predicts returns: crypto momentum

- One of the most studied asset pricing regularities is momentum
 - (e.g., Jegadeesh and Titman 1993; Moskowitz and Grinblatt 1999).
- Theory:
 - Cong, Li, and Wang (2019)
 - the network effect of user adoption generates a positive externality that is not immediately incorporated into cryptocurrency prices → momentum
- We find:
 - <u>Strong statistical evidence of momentum at different horizons</u>

What predicts returns: crypto investor attention

- Theory:
 - Sockin and Xiong (2019) differentiate positive investor attention and negative investor attention
- Construct:
 - Proxies for attention: Google searches, Twitter searches, etc.
- We find:
 - Strong evidence for both positive and negative attention
 - And that attention and momentum are distinct

What does not work: crypto valuation ratios

- Equity market:
 - the fundamental-to- market ratios (e.g., dividend-to-price; earnings-to-price).
- Crypto market:
 - <u>Very weak evidence for fundamental to price ratios can predict returns</u>

Fact #5: Crypto market returns can be predicted by crypto momentum and crypto investor attention

Other interesting facts

Regulations

- Auer and Claessens (2018) and Shanaev et al. (2019) determine 120 regulative events
- We find:
 - <u>cryptocurrency returns respond to negative regulative events but not to</u> <u>positive regulative events</u>

Speculative interest

- Construct speculative shares controlling for network growth
- Find no statistical evidence of either contemporaneous effects of predictability
- But <u>high returns today predict future speculative share</u>

Sentiment

- Construct a measure that is directly aimed to capture investor crypto sentiment
- <u>Sentiment measure positively and significantly predicts future</u> <u>cryptocurrency returns.</u>
 - is distinct from the investor attention and cryptocurrency momentum results

Beauty contest

- Use Biais and Bossaerts (1998) to measure crypto disagreement:
 - Volume to volatility ratio
- Coin market returns are higher when there is a lot of disagreement
 - But does not predict future returns

So far ...

- Considered coin market
- But what determines the prices of individual coins?

Systematic approach

- Create an equivalent of the "factor zoo" for crypto
 - Size
 - Momentum
 - Value
 - Volume
 - Volatility
 - Liquidity
- We find:
 - <u>ten cross-sectional cryptocurrency return predictors "strategies"</u>

A three factor model

- Return on a coin =
 - Return on the coin market factor (CMKT)
 - Return on the coin market factor (CMOM)
 - Return on coin market size (CSMB)
- Similar in spirit to the factor models in equity markets:
 - <u>Small number of factors (three) "span" or explain the all of the return</u> predictors

Fact #6: a small number of factors explain the cross section of the coin returns

Size: investigating the mechanism

Size premium is a **proxy for liquidity**:

- 1. Small coins have lower prices and higher Amihud illiquidity measure relative to the large coins;
- 2. In the time-series, the cryptocurrency size premium is larger at times of high cryptocurrency market volatility.
- 3. In the cross-section, the cryptocurrency size premium is more pronounced among coins that have high arbitrage costs;
 - Create a composite index for the "cost of arbitrage"
 - Small coins are more difficult to arbitrage (cf. Shleifer and Vishny (1997) and Pontiff (2006)
- But interestingly: the size effect does not capture the lottery or skewness effect among the very small coins.

Size: capital gain versus convenience yield

- Theory: Cong, Li, and Wang 2018; Sockin and Xiong 2018; Prat, Danos, and Marcassa 2019
 - Two benefits for investors: capital gain and the convenience from transactions
 - Larger and more mature cryptocurrencies have higher convenience yield, and thus their capital gain should be lower.
- We find:
 - Cryptocurrency size premium is relatively large at times of high demand for transactions.
 - Interestingly: momentum is not

Momentum: theory

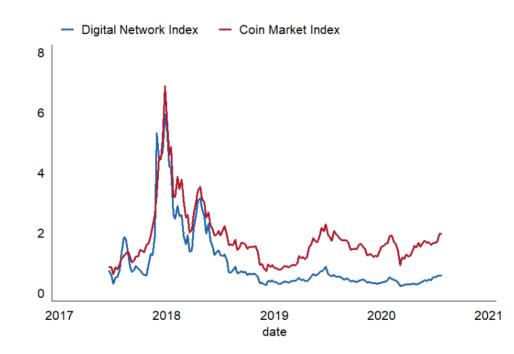
• The behavioral explanations of the momentum (e.g., Barberis, Shleifer, and Vishny 1998; Daniel, Hirshleifer, and Subrahmanyam 1998; Hong and Stein 1999)

Momentum phenomenon could arise as a result of:

- 1. Investors' delayed reaction to information (underreaction)
- 2. Overreaction to information (then should be followed by reversal)

Momentum: Underreaction to information? No!

- Underreaction:
 - Information should be slower to incorporate for the small coins
- We find that momentum is larger among large coins
 - Where information quality and its incorporation is better
 - Does not support underreaction
- In contrast to equity,
 - where momentum strategies work better among smaller stocks (see Hong, Lim, and Stein 2000).


Momentum: Overreaction? Yes!

- Strong at relatively shorter horizons
- Has a peak
 - \rightarrow after the peak have negative returns
- Strong among high-attention coins
 - Consistent with recent theories of investor overreaction (Peng and Xiong 2006; Andrei and Hasler 2015)

Fact 6: Cross-sectional factors connect to theories in other asset classes

Fact #7: It is not just currencies

Comparison Between Digital Network Index and Coin Market Index

Main takeaways

- Crypto is "coming of age"
- Can be analyzed with the standard asset pricing tools
- Exciting area of research